
	[A Uni	t of Vivekanan	ıda Vidy	neering & Technology avardhaka Sangha Putt	ur ®]			
	Affiliated to VTU, Belagavi & Approved by AICTE New CRM08 Rev 1.10					Delhi 03/08/2021		
CONTINUOUS INTERNAL EVALUATION-								
Dept: ME Sem / Div: 6 A Sub: Finite Element Methods				S Code: 1 Elective:	S Code: 18ME61 Elective: N			
Q		Questions			Marks	RBT	COs	
N		PART A						
a	Derive the shape functior			c triangular element.	12	L2	CO5	
	An induction furnace wal and outer layer with them shown in the figure. Dete I $600^{\circ}C$ T_1 T k_1 25cm	mal conductive rmine the not	ity k_1 , k_2 lal temp	2 and k3 respectively as	5	L3	CO4	
	1	OR						
	Arrive at the expression of triangular element.	of the stiffness	s matrix	for the axisymmetric	13	L2	CO5	
b	Find the temperature dist Consider two elements fo			shown in the figure. 1 cm radius h = 5 W/cm ² -K k = 70W/cm-K	12	L3	CO4	
		PART	B					
³ a Derive the lumped mass matrix for the bar element.					8	L2	CO5	
b	Derive the shape function for 1D heat conduction element.				8	L2	CO4	
	Determine the temperature in the figure. There is an 500W/m ³				vn 9	L3	CO4	

CONTINUOUS INTERNAL EVALUATION- 3

